
NASA CR-134972

R76AEG268

- EXPERIMENTALCLEAN COMBUSTOR
_- PROGRAM

i

Alternate Fuels Addendum
Phase II Final Report

=.

by

1
C,C, G1 eason

_.W. Bahr



7 I. ilk.pelt No. 1 2. Govocnmer_fAccretionNo. 3. R=cipiont't(',Stale9No.
I

4. Till© _nd Sublitle b Ileport Dite

EXPEI_IM|,;NTAI, (:I.i,_AN (;(_M_tI_STOI_ 1"I_(5(_RAM .l'_lnu;_ry. ]q71.
A | ,T E P,N A TE ;,'l I I._i ._ A I 515FN 151FM 6. Pe.fofming 0rganilation Code

PIIA._I': II FINAI, I_I.;I'OIUI

?. Author(I) 8. Performin90rg0nitationReport No.
g76AE[12(IH

(_. (:. (II.EAS(aN and 15. W. I_AIIR
10. WOrk Unit No.

9. PerformingOrganizationNameandAddress

ff. Contractor Grant No.
(IENEltAf. I_LECTItlC COMPANY

I"VENI)AI,E. OlllO 45215 EA_3-IN551
- i3. Type of Report and PeriodCovered

12. SponsoringAgencyN0meand And,ess CONTI_ACTOR P, EPORT

NATIONAL AERONAUTICS AND SPACE ADM1NISTBAT1ON 14. SponsoringAgencyCode
WASttlNGTON. I). C. Z0546

15. S4Jpplemen_aryNotes

16. Abstract

A study was conducted to investigate the characteristics of current
and advanced low-emissions combustors when operated with special test fuels

si_ulatlng broader ranges of co tbustlon properties of petroleum or conl-
derived fuels. Five fuels were evaluated; conventional JP-5_ conventional

No. 2 Diesel, two different blends of Jet A nnd colmnerclnl aromatic mixtures -
- "zylene bottom_" and "naphthalene charge stock"_ and a fuel derived from

shale ell crude wbich was refined to Jet A specifications, 11u'ee CFS-50

engine size eombustor types were evaluated; the standard production cam-
buster, a Radial/Axial Staged Con_ustor, and a Double Annular Combustor.
Performance and pollutant emissions characteristics at Idle and simulated
takeoff conditions were evaluated in a full annular combustor rig. Altitude

relight characteristics were evaluated in a 60° sector co,_)ustor rig.
Carboning and flashback cbaraeteristies at simulated takeoff conditlons were
evaluated in a 12° sector combustor rlg. For the five fuels tested, effects

were 8enerally quite moderatej but well deflnud, CO_ IIC,NOx and smoke
emissions levels and peak liner metal temperatures increased with decreasing
hydrogen content of the fuel which ranged from 12.2 to f3,7 percent by
wei_it. CO, DC and smoke emissions levels also increased with final boiling
polnt of tlm fuel which ranged from 529 to 607 ° K. Effects on other character-
istics were qulte small,

17. Key Words(Suggestedby Author(t)) 115. Distribution Statement

IColt_b_t_t|on_ Ermis_lolts_ (_'_._6_0

Combustor, Special I.'uels) CTOL L1N(:LASSII.'IED - UNLIMITEI)
Polh)tion Reduction

lg. S_urity C1a_$i1.(of thi| report) 20, S_curJtyCIst$if.(of thispe_) t 2f. No. of Pa_e$ 2_. Pri_:e"

LINCI_ASSIFIEI) U NC; LAS._I l.'I El) [ 61

' ForsalebytheNatioe_alTechnicalInlol[l_ahollService.Sp/ul_field.V,_.m=;_22151

1976015310-TSA03



TABLE OF CONTENTS

Section Page

1.0 SUMMARY 1

2.0 INTRODUCTION 2

3.0 TEST FUELS 4

4.0 PROGRAM PLAN 6

5.0 ....... APPARATUS AND PROCEDURES 8

5.1 Test Facilities 8

5.2 Test Combustors 8
5.3 Test Conditions and Procedures 17

6.0 RESULTS AND DISCUSSION 27

6.1 CO and HC Emissions 27

6.2 NOx Emissions 45
6.3 Smoke Emissions 45

6.4 Combustor Performance 46

6.5 Altitude Religh t 46

6.6 Carboning and Flashback 46

7.0 SUMMARY OF RESULTS 47

8.0 CONCLUDING RE_tARKS 48

APPENDIX A - Detailed Test Results 49

APPENDIX B - Nomenclature 60

APPENDIX C - References 61

i I I i "

1976015310-TSA04



LIST OF ILLUSTRATIONS

pa_____c

]. Fall-Annular CF6-50 Combustor Test Rig, Axial Cross 9
Section Y_cw.

2. CF6-50 Combustor Exit Rake 'traverse Assembly. I0

3. GaS Samp]e Location and Manifolding Diagrams. 11

4.__._eneral Electric Emissions Measurement System. 12

5. CF6-50 60 ° Sector Combustor Test Rig. 13

6. 12 ° Sector Carboning Test Combustor. 14

7. 12 ° Sector Flashback Test Combustor. 16

8. Standard Production 0F6-50 Combustor Assembly. 18

9. Radlal/Axial Staged Combustor Assembly. 19

i0. Radial/Axial Staged Combustor Configuration Details. 20

ii. Double Annular Combustor Assembly. 21

12. Double Annular Combustor Configuration Details. 22

13. Combustor Metal Temperature Instrumentation Locations. 25

14. Effect of Fuel Type on Standard CF6-50 Combustor 29
Emissions at Idle Comlitions.

15. Effect of Fuel Type on Standard CFC_50 Combustor 30

Performance at Simulated Takeoff Conditions.

16. Effect of Fuel Type on Radial/Axial Staged Combustor 31

Emissions at Idle Conditions, Configuration R7.

, , 32
17. Effect of Fuel Type on Radial/Axial Staged Combustor

Performance at Simulated Takeoff Conditions,

Confit_uration RT.

18. Effect of Fuel Type on Double Annular Combustor 33
Emissions at Idle Conditions_ Configuration D7.

iV

!
!

- i 1 ] t - i -- m

1976015310-TSA05



1,IST 01" ILLUSTiLETIONS (C,mcluded)

I" i i_n rl.' Pag__..._

19. Effect of Fuel Type on Doable Annular Combustor Performance 34

at Simulated Takeoff Conditions, Configuration DT.

20. Effect of Fuel Type on Double Annular Combustor Emissions 35

at Idle Conditions_ Configuration DI2A.

21. Effect of F_el Type on Double Annular Combustor Performance 36

at Simulated--Takeoff Conditions, Configuration DI3.

22. Correlation of Effect of Fuel Properties on CO Emissions 38

I _ Levels at Idle Conditions.
23. Correlation of Effect of Fuel Properties on HC Emissions 39

Levels at Idle Conditions.

24. Correlation of Effect of Fuel Properties on _0 x Emissions 40
Levels at Simulated Takeoff Conditions,

2,5. Effect of Fuel Bound Nitrogen on NO x Emissions Levnls. 41

_ 26. Effect of Fuel Properties on Smoke Emissions Levels. 42

! ')7. Effect of Fuel Type on Combustion Efficiency at 43

Simulated Takeoff Conditions.

28. Effect of Fuel Properties on Peak Metal Temperatures at 44

Simulated Takeoff Conditions.

AI. CF6-50 Engine Windmilling Combustion Conditions. 58

L I

1976015310-TSA06



LIST OF TABI,I_S

Tab It! Pag¢._

1. 'l'e_t Fuel Properties. 5

II. Fuel Test Matrix. 7

III. Test Conditions. 23

IV. Sununary of Key Results. 28

Y. Emissions and Performance Correlation Parameters. 37

h-I. Emissions and Performance Test Results, Standard 50
Production CF6-50 Combustor.

A-II. Emissions and Performance Test Results, Radial/Axial 51

Staged Combustor, Configuration RT.

A-III. Emissions and Performance Test Results_ Double 52
Annular Combustor, Configuration D7.

A-IV. Emissions and Performance Test Results, Double 53
Annular Combustor, Configuration D12/13.

A-V. Altitude Relight Test Results_ Standard Production 54
CF6-50 Combustor.

h-VI. Altitude Rclight Test Results, Radial/Axial Staged 55
Combustor, Configuration RT.

A-VII. Altitude Relight Test Results, Double Annular 56
Combustor, Configuration DT.

A-VIII. Altitude Relight Test Results, Double Annular 57
Combustor, Configuration DI2.

A-IX. 12 ° Sector 'rest Results. 59

vi

i

1976015310-TSA07



SFCTION 1.0

SUI_IARY

_e Alternate Fuels Addendum to the Phase II Experimental Clean Com-

5ustor Program was conducted to investigate _e performance, durability,

end pollutant emissions characteristics of current and advanced iow-emlsslons

eembusters when operated with special test fuels that simulate broader

ranges of combustion properties of petroleum or coal derived fuels. Five
fuels were evaluated; conventional JP-5, conventiunal No. 2 Diesel, two

different blends of Jet A and commercial aromatic mixtures - "xylene bottoms"

end "naphthalene charge stock", and a fuel derived from shale oil crude whi_

was refined to Jet A specifications. _The evaluations were conducted con-

current with the Phase II Program in CF6-50 engine size combustor test rigs.

The standard production CF6-50 eombustor, a Radial/Axial Stages Combustor,

and two Double Annular Combustor Configurations were evaluated for pollutant

emissions, performance, altitude rellght, and carboning/flashback character-
istics.

Fuel effects were generally quite moderate but well defined and in the

directions anticipated. Decreased hydrogen content (increased aromatic

content) caused increases in CO D HC, NOx, smoke emissions levels and peak

liner metal temperatures. Increased final boiling point (reduced volatility)
caused further increases in CO, HC and smoke emissions levels. The shale

Jet A fuel had properties very similar to that of the JP-5 fuel except that

it had e high nitrogen content which increased the NOx emissions levels.

'1976015310-TSA08



SECTION 2.0

INTRODUCTION

In order to cope with diminishing domestic petroleum resources and to

avoid excessive dependence on foreign s_pplies, it is essential and inevi-

table that substitute fuels be developed_ based on petroleum, shale oil,

eoal_ or other domestically available resources. Aviation turbine fuels

represent a significant fraction of total petroleum consumption and it is

likely that in the future such fuels will be produced increasingly from

nonpetroleum sources. The future availability of aviation turbine fuels

could be increased if fuel specifications, such as aromatic content and

final boiling point, were relaxed. However, this might result in penalties

to engine performance, exhaust emissions characteristics and durability,

thus, requiring chanses in component designs or materials.

While large-scale production of aviation turbine fuels from shale or

coal may be as much as i0 years awayj the magnitude of the modifications

required to aircraft turbine engine components and materials might be such

the_ e similar tin_ is required to implement the technology, into eoTm_ercial

aircraft. _lerefore, in 1974_ NASA initiated a series of programs to define

problems and evolve solutions to permit the use of synthetic fuels as they

become available and to guide the industry in eetablishlnK practical fuels

specifications. One of these progra_ was an addendum to the NASA/General

Electrlc-Phase II Experimental Clean Combustor Program, which is the subject

of this report.

_le overall purpose of the multiphase Experimental Clean Combustor

Program is to develop and demonstrate technolo{_ for the design of advanced

combustors with significantly lower pollutant exhaust emissions levels than

those of current technology combustors, for use fn advanc£d CTOL commercial

aircraft engines. The NASA/General Electric program is spec_fically directed

towards providing advanced combustors for use in the General Electric CF6-50

engine. The Phase I Program was specifically directed towards screening and

evaluating a large number and variety of eombustor design approaches for

obtaining low CO, HC_ NO x and smoke emissions levels. Descriptions and

results of these investigations are presented in Reference i. _%e Phase Ii

Program was specifically directed towards further developing the two most

promising combustor design approaches from the Phase I Program to define and

provide a combustor design for engine demonstration testing in the Phase Ill

Program. Descriptions and results of these investigations are presented in
Re_rence 2.

_*e Alternate Fuels Addendum to the Phase ]I Program was specifically

designed to investigate the performance_ durabJ]ity_ and e_inust emissions

characteristics of advanced low-emissions conquerors when operated with special

test fuels that simulate the broadened range of combustion properties of

2

j ___ .

m
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synt[tet|e or pet1_oleum fuels with re]axe(] speeificatlons. 'I11especial tesL

[uel.s were selected to investigate Lhe poss[b]e effeet of re]axlnp, the cLirrent

.lot A fuel specification to permit:

a) an increase in the final belling point, and/or;

b) an increase in the aromatic concentration (reduetlo1%-/m-|_u/xo4_en

concentration).

The effort was conducted concurrent with the basic Pbase I] Program and

included both performance and exbaust emissions tests of the current pro-

duction CF6-50 combustor and two low-emissions combustor design approaches

(Double Annular Combustor and Radial/Axial Sta_ed Combustor).

:3

I

i
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SE(:TJON "l.O

TEST 1 II|'.LS

];_ve te,_t fuels wore uLi].lzed Jo these (_valuatJollS:

i. HH,-T-5624 Crade JP-5 Fuel (which moets the A:;'I'N ,let: A fuel

specification) was used in these and all other Phase II Program

eva] uations.

2. AST H grade No. 2-D Diesel Fuel was used in these evaluations to
investigate the effects of increased final boiling point and In-
creased aromatic content.

3. Special Blend A Fuel (a blend of conventional Jet A fuel and mixed

xylene compounds) was used to investigate the effect of increased

aromatic content. "Xylene bottoms" is a commercial, polycycllc

aromatic obtained from the Ashland Oil Company.

i

4. S_ecial Blend B Fuel (a blend of conventional Jet A fuel and

"naphthalene charge stock") was used to investigate the effect of

" increased aromatic content. Naphthalene charge stock is a commercial

high boiling point aromatic mixture obtained from the Ashland Oil

- Company,

5. Shale Jet A Fuel. A fuel actually derived from shale oil crude and

refined to Jet A fuel apecifications was obtained for limited eval-

uations from the pilot project described in Reference 3.

%q_e physical and chemical properties of these fuel.s are sumariz_d in Table 1.

The properties most influential on combustion characteristics are:

. I. Hydrogen content which ranges from 12.2 to 13.7 percent by weight

and varies inversely with aromatic content.

7 2. Final boiling point which ranges from 529 to 607 ° K.

3. Nitrogen content_ which ranges from nearly zero for conventional

aviation fuels to 813 ppm by weight for the shale ,let A fuel.

(:enerally_ a large fraction of fuel bound n_tro),en is converted

f to N0 x in a combustion process. If fully converted_ 813 ppm of

fuel bound nitrogen would produce u NOx emission index of 2.67 p,/kg
fuel.

7

I

I
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I1_ Ihc luel_; ovalua|jnp.s_ thl'c'e L_¢pna of ¢!olllhllsl i()11 I.o._;1!_ _¢elc c(_a_hlcleLl:

I. I)(_t;ll.led exhaust emJssions and performnnce eva]uations fo fu]]-

al'dl.i]lur ('Oll'_bu_t:or col'_fip;.uraLJoNs.

2. Altitude relip,ht evaluations of 60 ° sector conlbl_stoy couf:E1',uratJons.

3. Carboaing and flashback evaluations of ]2 ° sector cosf:L_;urations.

Four COmDUStOr configurations were evaluate(l:

]. Standard production CF6-50 eombustor.

2. llad:Lal/Ax[al Staged Combustur Confip_uration 117.

3. Double Annular Combostor Configuration D7.

4. l)ouble Annular Con_ustor Conflguration 1912/13.

A ||sting of combustor tests, configurations, and fuels used is contaJned
in Table! II.

This series of tests was conducted w:[th the saTileapparatus and pro-

cedures utilized in the basic Phase II Program a11d are brief]y described

in the Following sections. Detailed descriptions are presented in Reference
aed 2.

I
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SJ':AT13_ k.0

AP]_AI_A'rlI,_ AND I'I_OCI'_I)IlldC:{

',. I 'l'l':_'l' FACihlTIIC,q

'rh_ i!xh;lust eiilissieas _lud performance tests were conducted :[it a Pill]

;nliltllar eolnhustor test" rig which exactly duplicates the aerodynamic flowpnth
mid envelope (llmensJons of the CF6-50 engine. The rig was installed in a

lu;_i:c(q] equipped with an indlrect-fired alr heater and exhaust ductlng

sv.<;toms for high pressure operation. Eng:ine idle operating conditions were

('x:i,'ilvdul)l:icated _ but for CF6-50 engine takeoff simulation, combustor inlet

l_r('._sure,<_were limited to about l0 arm. Inchlded as part of this rig was

:i11exit plane rotating rake asseml>ly for ohtaining outlet temperatures and

pru.<_sures and for extracting gas samples. A cross-sectlonal drawing of the

r:Ll;with a standard CF6-50 combustor installed is shown in Figure i. A

photograph of the exit rake traverse assembly is shown in Figure 2. 'i_le

F;as sampling rake locations and manifolding are shown in Figure 3. Fifteen

or the probe elements were manifolded together for gaseous analyses. Ten

l probes wore manifolded together for smoke analyses. Cas samples were

obLained with t:lleon-llne system shown in Figure 4 and smoke samples were

obtained wlth s standard filter paper method. Further details of the

pollutant emissions measurement systems are presented in Reference i.

The altitude relight tests were conducted in a 60 ° sector combustor

t_mt rTg which also exactly duplicates the aerodynamic flowpath and envelope

dimces[ons of the CF6-50 engine. This rig was installed in a test eel].

equipl_ed with exhaust duetlng systems and capabilities for simulatlng hlgh
:i]titude engine windmilllng conditions. All of these tests were conducted

with ambient inlet air and fuel temperature. A cross-sectional diagram and
photograph of this rig is shown in Figure 5.

The carbonlng and flasllback tests were conducted in 12 ° sector rigs
i._;i;all(.d]n a Lest cell equipped with an indlrect-fired air heater and

_,xliau_t ductieg systems for high pressure operation. Engine takeoff con-

dLtJoa:_ were simulated with combustor inlet pressures tip to 18 atmospheres.

Carl)oning tests evaluating the sectors of either the pilot or ma_n stages

of the Doable Annular Combustor on the pilot stage of the Radial/Axlal

:;tag(,d Coml)ustor were conducted with the on-cup sector rig shown in

Figure 6. Flashback tests fol the Radial/Axial Staged Combustor were

"+ coudected with :i12 ° sector rig shown _n Figure 7.

' ' TE.gT.J. 7 COMBUSTORS

: 1'ht_r[rst series of tests were conducted w_th a standard productlon

CI.'(,-50_:ombustor (Model GI6, S/N 000395) for whlcb extensive emissions and

pt'rlorlnaucc with ,lP-5 fuel had been determined in a previous program. A

s

1
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Fil_urc, 5. CFO-50 /JO' Sectol' Coinl)tl_tOl" To,gt |ill4,
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(b) Aft Looking Forwtlrd

Figure (3. 12 _' Sector Carbon_ng T_,sf Combustor (Concluded).
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photograph of the eomhustor a.¢lsemh]y Is sJmwn In l;:[f:ure f_, 'l'h];_ coil|busier
was de._{J)',ned for e_xc.el.].ent po.rformance and low smoke e,fl s.4 [ o11;; character.-
istics, hut not for low gaseous po]]tltant era:isis:ions c:haraeleI':i.¢;t:[cs, 'J'll(.

Colnbuster has 30 air swirlers and fuel nozzles, The odd inu_)err!d swi r]e]-:{

are equipped with dual-orifice fuel nozzles which are always fueled. The
even nnmhered swirlers (except No. 14 which is midway between ipnltors) are

equipped with single-orlfice fuel nozzles which are only fueled above idle

power level and are matched so that all fuel nozzles flow the same at takeoff

power level. Swirler No. 1.4is always fueled with a special dual-orIHce
fuel nuzzle. In the test rigs_ the fuel nozzles were connected to two

independently metered and controlled fuel supply systems, so that the enf,ine
characteristics conld be duplicated. Further details of the standard

production CF6-50 eombustor are presented in Reference i.

T11e second series of tests were conducted w_th the final Phase II Program

modifications to the Radial/Axial Staged Con_ustor which was designated

Configuration RT. A photograph of the combustor asse1_ly i,_shown in Figure

9. Configuration details are shown in Figure I0. The low emissions Radial/

Axial Staged Combustor design approach features a pilot stape sized specifi-

cally for idle power operation with all of the fuel supplied to it, thereby

reducing CO and HC emissions levels. At the higher engine power operating
conditions_ the second or main stage is also fueled. "]llisl_tter stage,

which handles a high percentage of the airflow, is displaced both axially

and radially from the pilot stage. '111emain stage fuel is premixed, to some

degree, with its airflow. 111e fuel-air mixtures are lean and relatively

uniform resulting in reduced NOx emissions levels. Tileburning of these
lean mixtures is stabilized by the pilot stage of the combustor.

_le third and fourth series of tests were conducted with the Double

Annular Combustor which were designated Configurations D7, I)I2A, and DI3.

A photograph of the combustor assembly is shown in Figure ii. Configuration
details are shown in Figure 1.2. _e low emissions Double Annular Combustcr

design concept also features the use of a pilot stage desip.ned specifically
for idle power operatioL] with all of the fuel supplied to it. A high per-

centage of the combustion airflow is supplied to the main stage, llowever,

in this design approach, the main stage is more conventional in tlm" it is

self piloting and utilizes direct fuel injection. Configuration D7 represents
an interim modification to this combustor in the Phas'_ If Program; after-
which the Double Annular Combustor design approach was selected for Phase ]I]

Program engine demonstration. Configuration I)]2A closely simulates tile

engine combustor design including the use of prototype fuel injectors and
air swirlers in the pilot stage. Configuration I)13 cor_ined DI2A pilot

stage features with a main stage dilution air scheme modified to provide a

further reduction in high power NOx emissions ].ovals.

5.3 TEST CONDITIONS AND PROCEDURES

_e test conditions employed in each type of test are shown in 'fable 111.

Full annular rig tests were designed to measure the effects of fue[

type on pollutant emissions_ combustion efficiency, pressure loss, outlet

17
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(i(J Mlilll',(;lill_l ' _l'l'll()ll /_./_

. i . ,. .g_ _.:_,jy_,. _ --

"-_r { T .....̂ ,,_,----'S
._-_ . I ,..4' ._?", ii'_ "/" _- l"hlnii'hiilil,'vAi'i'ny

\\ j_. I i(lllO I,'u.l n,,zzh,_/Ai," ,<iwirh,,-:;) ._.;J;"_

-___ _2_ l • .4_,_\

I/ig }'till 60 ° I Z°
Ann_llal" S(;c'tor Sector:::

Airflow Distribution_ % Wc

Pilut SLn_e Swirlers

Fuel Nozzle Shroud 0.1 0.1 0.9

Primary Swirler 4.1 4, 1 3.3

Secondary Swirler 1 1.5 l 1.5 8.2

TOTAL 15.7 15.7 12,'t

Main Sta_e Flamcholders

TOTAJ, 47.2 ",7.2 48.5

Dilution

Pilot Stage 5.5 0 4.3

Inner I,iner 0 5.5 0

TOTAL 5.5 5.5 4.3

Cooling

PiLot Stage 11.4 1 I, ,1 6.6

i;'lanleholdcrs i. 7 I . 7 I. I

()tiLer 1,iner 7, 2 7.2

lllllt' r I,iner 9 • (' 9. {'_ 9.8

Semi l,eakage 1.7 1.7 -. 1.3

TOTAL 31 • 6 3l . 6 I 8, 8

l)ronlixiill_ l,Cllgtllp cln 6..1 (,,,[

Nulllbor of }!'htlllt_h¢ilH(_rs I_11 20 ,l

:" N(iL int'ludillg Side Wall Cooling

I_'it_llrt • ]0. |ILI(I)III/AN]Ill SllI_L,(iCollll)tl._ilof Collf|141il'_lt il)ll ])('llil]._.

:kll
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F_urc, I]. l)ouble Amulln_" ColldJU._h)r A._s¢_nlbl,v.
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J . [] I I , E

i,.. . hli ; [ _tj,i. j_

]"u] 1 (;0 _ ] 2"

// I

Outvz' _wiz'l Cul),'i ]

J"LI(_] NO_I¢_ _hl.¢lud 0.1 ()_) 0.1 ()._1 (J.IJ (J.9 [],¢J

Pl'ilmt l'y SWI r Iuz. 3.6 5.2 5.1 _,6 5.2 "1.'1 5.2

Sccunihlz.y Sv_'t 1'l o z' 8._ 7.4 ?,3 8.9 7..I 8.2 7.4

Total 12,5 13,.l 12,5 13,3 13.4 ]3,5 13.,t

_lln(]r _W_].J CkI[)S

1.'U,21 NI_/.ZI C Shl'uUd (}, I. O, ] 0 I : O, 1 (). ] -- , .-

Primary _wir ] ¢_I' 3.6 3.5 3,5 3,6 3,5 .....
_¢_ _ _:oli¢l _II*)' Swl r I el, 29.8 _9.5 _9,3 29_ _9_5 .....

.... 2.0_., ..... _3._._._ :2_._:?._ :,:,.,_--_ L::__.
. l)tJut iun /

I_il_J 1 ] d,7 11 0 0 l) .....

_: Otlt er l,ll%_l-,
N

lh_tiel 2 0 4,7 .$.(] 1) ,I,7 .....
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temp<'r;iture dlsl:r:l.bul:Jon_and combustor recta| temperatures. The cnmhustoru

wore hlstrumente(I with up to 115 math|, thermoc-oup].es ]ncnted as shown .In

I:ipurl_ I_1. These te_:;C8 were cendueted nt SJl._u]atf_d engine Idle nnd takeeJ f

,.mld II I.on,_i with variations in fuel-air ratio. A t¢_ta] of el.p.ht data point:_
_,_'t'_! obLtl|ll(,d W[t)l each test fno]. Tile to,'_t fuel,'; w_.re stored in I:;tnk..;

ndinconc to the Lest. cell and connected so that fee] lypo con]d be ehanf,,ed

durilu; the l:ests wJLhout shuttinl_ down the combustor. The test sequence
w:l:_:is fo]]nws:

.I. ],_ghtoff the combustor with JP-5 fuel and set idle conditions.

2. Run the four JP-5 fuel idle test points.

3. Holding idle inlet conditions, change fuel type and run four

fuel-air ratio test points.

4. Repeat step 3 for each of the special test fuels.

5. Change to JP-5 fuel and set takeoff conditions.

6. Run the four JP-5 fuel takeoff test points.

7. Holding takeoff inlet condltions_ change fuel type and run four

fuel-air ratio points.

8. Repeat step 7 for each of the special test fuels.

9. Change back to JP-5 fuel, run some cheek points at takeoff and

idle, then shut down.

'i1_issequence _;as selected to minimize the quantities of special test

fuels required and also to provide back-to-back evaluations of fuel effects.

In each fuel change, sufficient time was allowed to completely purge the

p_rcvious fuel from the control and metering systems.

Altitude relic;hi ces_s consisted of determining combustor ignition antl

blowout ]Amits over a range of operating conditions selected from the CF6-50

el11,[ne altitude windmilling map with air and fuel flow rates scaled down

i,,r the 60 ° sector ril;. Ip)lltion attempts were usually made at a simulated

enl:ise minimum fuel flow rate of 249 kg/hr. _._len the ilmition attempts were

successful, pressure blowout and lean blowout limits were determined. The

procedure w_,s then repeated at progressively more severe conditions until the

re lil_ht ]|m_ts were mapped. Fuel type was then changed and the procedure

repea ted.

Carboning tests in the 12 ° sector rig were conducted after each con-

fl4;nrntloo h;id under},,one a standard test cycle and posttest _nspectloo as

part of the |'base II Program. '_le eonfil,_urations were relnstalled_ operated

nt simulated takeoff conditions for one hour with JP-5 fuel and an additJona]

hour wlth tile Blend B fue]_ dttrin_ which smoke emisslons data were obtaJne¢1.

',I

I
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(i)(2)(2)(2)• " ' b; (3)

C3)
Standard pl, Oductioll C¢_l_lhustor

(2) (2) _) _L (_) (i)

_' i l/ I

(2)
Radial/A×ial Staged Combustor

DoUble Annular Combustor

Figure IB, Combt_stor McLL_I 'rcml)craturc Instruitlt, nLation I,,)caLions,
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Flashback tests of the Radlal/Axial Staged Combustor in the ]I ° sector

r:ll;were designed to determine where and if upstream hurn_nz lu the ran:In

_Lal_e premlxlng passage occurs, _11e sector was instrumented to ineasure

Dressurc ioss_ flemeholder metal temperatures and _as temperatures in the

prcmlxlng passage. Progressively more severe operatin K conditions were

set until either the facillty limits were reached or upstream burn_nF,

occurred. Flashback tenting was conducted with both JP-5 and Blend B fuel.

• • -- J .l, } J J - " " -
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S]':CTION 6.0

RESULTS AND DIS,CUSSION

Detailed results for each test are tabulated in Appendix A. Key
results are summarized in Table IV.

Effects of fuel type on exhaust emissions and combustor peak metal

temperature levels for each combustor configuration are illustrated in

Figures 14 through 21. '-_e effects of fuel hydrogen content (WH) and final

boiling point (TB) were assessed by ¢urve-flttlng these results with a fuel
property correction factor of tile form:

L\WH,JF-5/ \TB,JP-5 /

Results of this analysis are summarized in Table V and illustrated in Figures

22 through 28.

6.1 CO AND HC EMISSIONS

CO and HC emissions levels at idle operating conditions were highly con-

figuration and fuel-elf ratio dependent as illustrated in Figures 14, 16, 18,

and 20. The standard production combustor produced the highest emissions levels
and the Double Annular Combustor produced the lowest emissions levels. The

trends with fuel type were, however, the same for all four configurations.

The emissions levels were highest with No. 2 Diesel fuel, intermediate with

the blends, and lowest with normal JP-5 fuel. The shale Jet A fuel was

hardly discernable from normal JP-5 fuel with respect to HC emissions levels,
but the CO emissions levels were slightly higher. These results indicate that

idle CO and HC emissions levels are influenced hy both fuel hydrogen content

(WH) and fuel volitility as indicated by final boiling point (TB). As in-

dicated in Figure 22, the CO emissions levels correlate quite well when
corrected by the factor:

Kco"
As indicated in Figure 23, the HC emissions levels correlate quite well when

corrected by the factor:

K,co ] ,T,,,.,p_5/

27
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Figure 16, Effect of Fuel Type on Radial/Axial-

Staged Combust(n" Emissions at Idle

Condit,ons, Configurat,on R7.
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Figure 18. Effect of Fuel Type on Double Annular C,,)m-

bustor Emissions at Idle Con(litions_

Conf iK_u'at ion D7.
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IIC emissions levels were thus more dependent upon fuel hydrol;en content than
were CO emissions ]eve].s_ but the effect of final boiling point was about
the same for both HC and CO emissions levels.

6.2 NO_ EMISSIONS

NO x emissions levels were also highly configuration dependent. As

illustrated in Figures 15_ 17, and 19, tileNOx emissions levels at simulated
takeoff conditions were highest with the standard production combustor and

lowest with the Radial/Axial Staged Combustor_ but with reduced combustion

efficiency levels. The trends with fuel type were_ however, the same for all

four configurations. The NO x emissions levels were highest with the aromatic

blends and lowest with normal JP-5 fuel. As indicated in Figure 24, the NO x
emissions levels correlate quite well when corrected by the factor:

i.i

x " \w.,jF.5
Final boiling point had no diseernable effect on NOx emissions levels_ but

fuel-bound nitrogen content did produce a measurable effect.

The NOx emissions levels with normal JP-5 fuel and the shale Jet A fuel

are compared in Figure 25. The inlet air humidity varied considerably during

these tests (4 to 14 gH20/kg air), so the emissions levels have been corrected

to standard humidity (6.29 g/kg), The shale Jet A fuel NOx emissions levels are

aiRnlficantly higher than those with JI*-5 fuel. This is attributed to partial

- conversion of the fuel-bound nitrogen to _10x Conversion efficiencies from
about 20 to 80 percent are indicated which are in general agreement with
References 4 and 5,

6.3 SHOKE EMISSIONS

Smol_e emission levels were generally very low wlth all four test confi_;ura-

tions. As shown in Figure 26, the hi£hest levels were produced by the standard

production combustor at idle operating conditions with Ho. 2 Diesel fuel.
Results indicate approximately the relationship:

1 1
In all of the other teats, smoke levels were vlrtually zero with auy ft*e].
Older combustor designs utilized in References 4 and 5 had higher smoke levels

and stronf,er effects of fuel hydrogen content were ohserved. '[hus. advanced

low smoke combustors appear to be relatively more tolerant tn fuel properties.

£_. - L j I i
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6.4 C(IrlIHISTOR PI,',RI,'fIRMANCE

_;maern]].y_ the cffee_; of rue] type on eemlmstor pcrf_rmaneo were very
!;I.;I]]. I_o discernab]e effect on pre,_mure loss or ex:It temperature dJsl:rl-
bul lollswere obHerved.

ColnhutltiJou eff:leiency ]eveJs at _;:lmu].ated takeoff conditions are s}_owll

in I"Jf;ure 27. All ]eve]s were virtually 100 percent except with the Ibulial/
Axial .qtaged Cordu_stor. Combustion efficiency leve].s for the Radial/Axial
St:aped Combustor were somewhat lower with the aromatic blends than with JP-5
or No. 2 Diesel fuels.

Combustor peak metal temperature levels and locations were dependent

upon both configuration and test condition. As illustrated in Figure 28,
the highest levels at simulated takeoff condition were found on the fourth

panel of the outer liner of the standard production combustor. The results

indicate approximately the relationship

which :is a much weaker effect than reported in References 4 and 5. For the

low emissions configurations, the temperature levels were lower and virtually

independent of fuel type. _ms, low smoke and low gaseous emissions cam-
buster designs appear to be relatively insensitive to fuel hydrogen content.

6.5 AI,TITUDE RI"I.IGIIT

Altitude relight limits were approximately the same for all four test

configurations and all four test fuels. However, these testa were conducted

with ambient temperature air and fuel. Because of the higher flashpolnt and

viscosity of No. 2 Diesel fuel, greater differences could be expected with
cold fuel and air.

6.6 CARBONINf; A_;D FLASHBACK

}Io dlscernable carbon buildup on either the fuel nozzle or primary air
sw[rler w-mturi was observed In either of the testa conducted with JP-5 and

Blend I_fuels. '1111sresult was expeeted_ since the configurations had been

l_r_,vlous]ydeveloped in Phase II Program tests using a heaw distillate fuel.

With less developed configurations_ some differences between JP-5 antl

P,lend I; fuels might be expected.

In the flahsbaek test of the Radial/Axial Staged Coml,ustor, a flameholder

burlmut_ occurred while operating with tlm Blend B fuel at simulated takeoff

condJ.tions. The resulting burnout can be seen in Figure 7. 'llm Blend B

fmq had a low flashpoint compared to normal JP-5 fuel (314 vs 330 ° K) which

may haw: caused flashback and subsequent burnout. "111us, a potential problem
with premix system_ is Jnd]cated, particularly with a fuel ht_ving a low
[lashpoint.

IG
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SECTION 7.()

_is series of tests provides a prellm_nary assessment of the possible

impacts of using hydrocarbon fuels with physical and chemical properties

significantly different from those of normal aviation kerosene on aircraft

turbine engine con_ustor performance and exhaust emissions characteristics.

Tests were conducted with the standard production CF6-50 combustor and two

CF6-50 size low-emissions design approach combustors which evolved in the

NASA]GE Experimental Clean Combustor Program. For the five fuels tested,

the important fuel properties were found to be hydrogen content, which

ranged from 12.2 to 13.7 percent by weight; final boiling point, which

ranged from 599 to 607 ° K, and fuel nitrogen content, which ranged from

near zero to 813 ppm.

Fuel effects were generally quite moderate_ but well defined and

in the directions anticipated, with respect to pollutant emissions

characteristics (CO_ HC, NOx, and smo|_.e) and pesk liner temperatures.

Decreased hydrogen content caused an increase in COj HC, NOx_ and smoke

emissions levels and in peak liner temperature. Increased final boiling

point caused an increase in CO_ HC and smoke emissions levels, but had no

discernible effeot on He x emissions levels or peak metal temperatures.

Limited testing indicated fuel bound nitro_.en conversion efficiencies from

about 20 to 80 percent depending upon operating conditions.

17
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SECTIOH 8.0

CONCLUDINC, REHAI_KS

In advanced low smoke con_ustors, like the CF6-50 combustor, fuel

hydrogen content effects on smoke and liner temperatures appear to be

relatively small. Some increases in gaseous emissions levels were noted as

hydrogen content and/or final boiling was increased. Overall_ however,

these results suggest that these advanced turbofan engines can probably

accommodate a wider range of fuel properties and, thus, be satisfactorily

operated wlth a broader range of petroleum fuels and fuels derived from
shale or coal sources.

The low emissions type combustors tested in this program appear to be

even less sensitive to fuel hydrogen content and/or final boiling point. Thus,

these eombustors appear to offer additional promise for pemni_tlng the use of

a wlde range of alternate fuels in future engines.

Additional testing is recommended to verify these trends as properties of
future fuels become batter defined and/or as actual fuels become available

in sufficient quantities for more extensive testing. In particular, l:he

following types of tests are recommended:

i. Actual advanced turbofan engine operation. At high pressure,

effects of fuel properties could be greater than indicated

in these rlg tests.

2. Rellght tests wlth cold fuel and air. Effects of fuel properties

could be greater than indicated in these ambient temperature_

rlg tests.

3. Fuel thermal stability related tests. In these short tests with

ambient temperature fuels, no fuel nozzle gumming or plugging

was Jndicated, but with hot, aromatic fuels, some problems l%i_t
develop.

48
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A11PEND'IX /t

DETAIl,E1) TE_T RI'_SI_LTS

1_lis appendix contains summaries of tileoperatiny conditions, performance
and exhaust emissions data for each test conducted in the Fuels Addendum.

11_e full annular rig performance and emissions test results are summarized

in Tables A-I through A-IV. In these data tables, only the measured eombuster

airflows are shown for the sake of brevity. In conducting the tests, however,
the total airflow and turbine cooling bleed airflows _ere set and measured.

Nominally, the combustor airflow was 84 percent of the total inlet airflow.

Reference velocity in these tables is based on total inlet airflow, total 2
inlet dansity, and combuster housing area at the dome exit which is 3729 cm .

The NOx emissions indices are presented two ways: as measured at rig con-

ditions and corrected to true engine operating conditions and standard inlet

air humidity (6.29 gH20/kg alr). Average exit gas temperature was calculated
from metered fuel-air ratio and gas sample combustion efficiency. Exit gas

profile and pattern factors are based on uncorrected thermocouple readings.

The 60 ° sector rig altitude relight results are summarized in Tables

A-V through A-VIII. Simulated flight conditions were interpolated from the

engine windnLilllng map (Figure A-I) using the measured airflow rate and inlet

pressure. Successful ligh$off is defined as full propagation as indlcate4 by

temperature _ise from primary zone thermoeouples downstream of each fuel
nozzle. Blowout was visually determined.

_le 12° sector rig results are summarized in Table A-IX.

<t!i
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A1'I'F.NI)IX 1_

N_I_NCLATURE

CO Carbon Monoxide Emissions

tic }lydrocarbons Emissions

(Assumed to have same composition as test fuel)

NO Oxides of Nitrogen Emissions

x (Calculated as NO2)

EI Emissions Index g pollutant/kp, fuel

Mp Flight Hach Number ---

P3 Combustor Inlet Total Pressure atm

T3 Combustor Inlet Total Temperature o K

Tf Fuel Temperature ° K

TB Fuel Final Boilin_ Point o K

Vr Combustor Reference Velocity m/s

W3 Compressor Discharge Airflow Rate kg/s

Wc Combuetor Airflow Rate kp./s

(U3) - (Turbine cooling airflow rate)

Wf Fuel Flow Rate kg/hr

Wll Fuel llydrogen Content by Weight F,/;'

f Fuel-Air Ratio ---

i;(*
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